Part Number Hot Search : 
BMOD0006 SEMD6 SFD607 CB102 CB102 FM4003 HY5PS FM4003
Product Description
Full Text Search
 

To Download M63155FP Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 M63155FP
3 PHASE BRUSHLESS MOTOR CONTROLLER
REJ03F0037-0100Z Rev.1.0 Sep.16.2003
Outline
The M63155FP is a three phase brushless motor controller with six external N-channel Power MOSFETs. The motor coil current is controlled by either a PWM pulse duty or a D/A signal level from an external controller. Both VCC1 and VCC2 can be supplied by either external power supply or internal 5V regulator. Also voltage monitor is available, and whichever of power supplies drops down, it generates an error signal. Either fast or slow current-decay, either coast(free-run) or dynamic brake(short-brake) can be selected. Several protection circuits are built in, thermal shut down and so on. Internal tachometer, direction control and oscillator for internal logic are also available.
Features
* * * * Wide voltage range: From 10V to 40V (VM) 5V regulator with the external PNP transistor Internal gate supply voltage generator (Charge pump) Voltage monitor (VM , SVCC , External FET gate & External FET drain-source) (Voltage monitor of External FET gate & External drain-source can be disabled.) Motor current control by either a PWM duty or a D/A level Selectable fast or slow current-decay Selectable coast (free-run) or dynamic brake (short-brake) FG internal tachometer (3phase mixed) Direction control Thermal Shut Down (TSD) Power loss brake Protection for invalid hall codes
* * * * * * * *
Application
* High Power Three Phase Brushless Motor.
Rev.1.0, Sep.16.2003, page 1 of 40
M63155FP
Pin Configuration (TOP VIEW)
UT U UB VT V VB WT W WB RSM GND NC RSS HU HV GND HW VCC1 TCL CTL CCFB FCE FG FLT RST DS
1 2 3 52 51 50
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
21 22 23 24 25 26
32 31 30 29 28 27
VM VGT CP6 CP5 VGB CP4 CP3 VCP CP2 CP1 GND SVCC VCC2 OSC1 OSC2 GND SGND REGR REGC REGB REGE REGL BRK BRS FR PWM
52pin HSSOP (52P9Y)
XXX XXX M63 155 FP
Rev.1.0, Sep.16.2003, page 2 of 40
M63155FP
Block Diagram
SVCC
41
A B CD
CP1 CP2 VCP CP3 CP4 VGB CP5 CP6 VGT
43 44 45 46 47 48 49 50 51
VM
52
VGB Monitor VGT Monitor Hall Monitor D-S Monitor VM Monitor
5V Monitor TSD Monitor
B
charge pump for lower gate 2
charge pump for lower gate 1
charge pump for upper gate
1
D
UT U UB
120 / 60 degree Switching Matrix / Pre-Driver
2
A
3
B
VCC2 40
4
D
VT V VB
OSC1 39
Oscillator
5
A
OSC2 38 SGND 36 TSD Bandgap Reference
Input Logic Circuit
Toff circuit
6
B
+
-
Current Control
7
D
WT W WB
8
A
REGR 35 REGC 34 REGB 33 REGE 32 REGL 31
42, 37 30 29 28 27 26 25
9
(Tacho Meter)
FG
5V Regulator
10 RSM 12 NC 13 RSS
C C C
24 23
22
21
20 19
18
17
15
14
16 , 11
GND
BRK BRS FR PWM DS RST FLT FG FCE CCFB CTL TCL
VCC1
HW HV HU
GND
Rev.1.0, Sep.16.2003, page 3 of 40
M63155FP
Pin Description
Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Symbol UT U UB VT V VB WT W WB RSM RSS HU HV GND HW VCC1 TCL CTL CCFB FCE FG FLT RST DS Function Phase-U Top-side Gate Drive Output Phase-U Motor Output Phase-U Bottom-side Gate Drive Output Phase-V Top-side Gate Drive Output Phase-V Motor Output Phase-V Bottom-side Gate Drive Output Phase-W Top-side Gate Drive Output Phase-W Motor Output Phase-W Bottom-side Gate Drive Output Motor Current Sensing Input for big signal line NC NC Motor Current Sensing Input for small signal line HU Hall Sensor Amp. Input HV Hall Sensor Amp. Input GND HW Hall Sensor Amp. Input Small Signal 5V Power Supply Current Control Off Time Input Current Control Input Output of current comparator Voltage monitor enable input FG Output Voltage Monitor Fault Output Reset Input Fast / Slow Current Decay Mode Select Input Pin No. 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 Symbol VM VGT CP6 CP5 VGB CP4 CP3 VCP CP2 CP1 GND SVCC VCC2 OSC1 OSC2 GND SGND REGR REGC REGB REGE REGL BRK BRS FR PWM Function Motor Power Supply Top-side Gate Supply Voltage Output Charge-pump Capacitor 6 Charge-pump Capacitor 5 Bottom-side Gate Supply Voltage Output Charge-pump Capacitor 4 Charge-pump Capacitor 3 Charge-pump Voltage Output Charge-pump Capacitor 2 Charge-pump Capacitor 1 GND External 5V Sensing Input Big Signal 5V Power Supply Oscillator Output 1 Oscillator Output 2 GND Oscillator GND 5V Regulator Phase Compensation 5V Regulator Output 5V Regulator Current Sink 5V Regulator Current Sensing 5V Regulator Phase Compensation Braking Input Braking Mode Select Input Forward / Reverse Select Input PWM Input
Rev.1.0, Sep.16.2003, page 4 of 40
M63155FP
Absolute Maximum Rating
(unless otherwise noted Ta=25C centigrade)
Limits Symbol Vm Vcc Vto Vo Parameter Motor Power Supply 5V Power Supply Top Side Gate Drive Output Voltage Motor Output Voltage Conditions at VM at VCC1, VCC2 at UT, VT, WT at U, V, W including motor coil over shoot at UB, VB, WB at BRK, BRS, FR, DS, RST, HU, HV, HW PWM at FG, FLT, TCL at FG, FLT, TCL Free Air Free Air Min. 10 4.0 Typ. VM +10.8 Max. 40 6.0 50 Unit V V V V
Vbo Vin1 Vin2 Vdo Ido Pt Kt Tj Topr Tstg
Bottom Side Gate Drive Output Voltage Logic Input Voltage Logic Input Voltage Open Drain Output Voltage Open Drain Output Current Power Dissipation Thermal Derating Junction Temperature Operating Temperature Storage Temperature
0 0 -20
12.2 1.2 9.6 -
6 15 6 5 150 75 125
V V V V mA W mW/C C C C
Recommended Operating Condition
(Unless otherwise noted Ta=25C, VM=12V, VCC1=VCC2=5V)
Limits Symbol Vm Vcc Fpwm Parameter Motor Power Supply 5V Power Supply PWM Input Frequency Conditions at VM at VCC1, VCC2 at VCC1 on Power Fail at PWM Min. 10 4.5 3.5 10 Typ. 12 5.0 20 Max. 40 5.5 5.5 30 Unit V V V kHz
Rev.1.0, Sep.16.2003, page 5 of 40
M63155FP
Thermal Derating
Power Dissipation Pdp (W)
5.0
using T-type board
4.0 3.0 2.0 1.0
using U-type / V-type board
0
25
50
75
100
125
150
Ambient Temperature Ta (degree centigrade)
This IC's package is POWER-SSOP, so improving the board on which the IC is mounted enables a large power dissipation without a heat sink. For example, using an 1 layer glass epoxy resin board, the IC's power dissipation is 2.6W at least. And it comes to 3.6W by using an improved 2 layer board. The information of the T, U, V type board is shown in next page.
Rev.1.0, Sep.16.2003, page 6 of 40
M63155FP
The boards for thermal derating evaluation
1st layer [TOP view] Conditions Board material ; Glass-epoxy FR-4 Size ; 70 X 70 mm2 Board thickness ; 1.6 mm 1 and 2 layers Metal material ; copper Metal thickness ; 18 m 2nd layer [BACK view]
T-type
[2 layer]
U-type
[2 layer]
V-type
[1 layer]
Heat sink
Lead
Chip Package inner structure 52P9Y-K IC mounting on the evaluation board
Rev.1.0, Sep.16.2003, page 7 of 40
M63155FP
Electrical characteristics
(Unless otherwise noted Ta=25C, VM=12V, VCC1=VCC2=5V)
Limits Symbol Parameter Conditions Min. Typ. 2.3 Max. 5.0 Unit mA POWER SUPPLY (VM, VCC1, VCC2, VCP, VGB, VGT) Motor Power Supply at VM Im Normal Control Mode Current The motor is not driven Ivcc 5V Power Supply at VCC1 Current Normal Control Mode The motor is not driven at VCC2 Normal Control Mode The motor is not driven Vcp Charge-pump Output at VCP, Voltage no gate driving Bottom-side Gate at VGB, Vgb Supply Voltage ILVGB=ILVGT=7.0mA Vgt Top-side Gate Supply at VGT, Voltage ILVGB=ILVGT=7.0mA Charge-pump (VCP) fosc=1MHz, Tcp Cp1=470nF, Ccp=4.7F Pre-charge Time *Refer to the Fig.1. Tgb Charge-pump (VGB) fosc=1MHz, Pre-charge Time Cp2=470nF, Cgb=33F * Refer to the Fig.1. Charge-pump (VGT) fosc=1MHz, Tgt Cp3=470nF, Cgt=4.7F Pre-charge Time * Refer to the Fig.1. Fosc Oscillator Frequency Rosc=15k
-
4
7
mA
-
16
33
mA
7.0 8.5 VM +7.5 -
8.5 11.5 VM +9.5 4
10.0 4.8
V V V msec
-
28
33.6
msec
-
4
4.8
msec
6.4
8.0
9.6
MHz
12V
VM (VCC2=REGC)
50% 8.6V (12.2V, VM+10.8V)
0V
90%
VCP (VGB, VGT)
0V Tcp (Tgb, Tgt)
Fig.1 Charge-pump Pre-charge Time Definition
Rev.1.0, Sep.16.2003, page 8 of 40
M63155FP
Electrical characteristics
(Unless otherwise noted Ta=25C, VM=12V, VCC1=VCC2=5V)
Limits Symbol Parameter Conditions Min. 4.75 Typ. 5.0 0.0 Max. 5.25 30.0 Unit V mV REGULATOR (REGE, REGB, REGC, REGR) Regulator Output Io=50mA Vr Voltage *Note1 Vm=10~40V, Io=50mA Vrin Regulator Output *Note1 Voltage Stability for Input Vm Voltage Regulator Output Vrout Io=0~200mA *Note1 Voltage Stability for Load Current Vlim RS Threshold Voltage REGE terminal voltage *Note1 * Note1 :
-
0.0
30.0
mV
0.8
1.0
1.2
V
The values of the external parts are in the "The recommended values of the external parts" table. The hFE of External PNP transistor is "100" minimum.
Rev.1.0, Sep.16.2003, page 9 of 40
M63155FP
Electrical characteristics
(Unless otherwise noted Ta=25C, VM=12V, VCC1=VCC2=5V)
Limits Symbol Parameter Conditions Min. 0 30 4.00 50 9.0 400 Typ. 50 4.25 100 9.5 500 Max. 5.5 75 4.35 150 10.0 600 VM+6 Unit V A V mV V mV V VOLTAGE MONITOR (VM, SVCC, FLT) External 5V Monitor Vsvi at SVCC Input Voltage Range Isvi External 5V Monitor at SVCC SVCC=5V Input Current External 5V Monitor External 5V Drop Down Vths Threshold Voltage *Refer to the Fig.2. Vshy External 5V Monitor External 5V Rise up Hysteresis Voltage *Refer to the Fig.2. VM Monitor VM Drop Down Vthm Threshold Voltage *Refer to the Fig.2. Vmhy VM Monitor VM Rise Up Hysteresis Voltage *Refer to the Fig.2. Hi-side FETs gate Vthug monitor Threshold Voltage Vughy Hi-side FETs gate monitor Hysteresis Voltage Low-side FETs gate Vthlg monitor Threshold Voltage Vlghy Low-side FETs gate monitor Hysteresis Voltage Drain-Source monitor Vthds Threshold Voltage Vdshy Drain-Source monitor Hysteresis Voltage FLT Output Saturation at FLT, output sink Vsft Voltage current: 2mA
-
-
200
mV
-
6
V
-
-
200
mV
0.7 -200 -
1 0.15
1.3 0.5
V mV V
SVCC (VM, External gate voltage, External Drain-Source voltage)
Vths (Vthm,Vthug,Vthlg,Vthds)
Vshy (Vmhy,Vughy,Vlghy,Vdshy)
5V
FLT
0V
Fig.2 Supply Voltage Monitor Time Definition
Rev.1.0, Sep.16.2003, page 10 of 40
M63155FP
Electrical characteristics
(Unless otherwise noted Ta=25C, VM=12V, VCC1=VCC2=5V)
Limits Symbol Parameter Conditions Min. 0 -2.0 2.4 Typ. -0.4 2.5 Max. 3.3 2.6 Unit V A V CURRENT CONTROL (RSS, REF, CTL, TCL, CCFB) Current Control Vcti at CTL Input Voltage Range Icti Current Control at CTL, Input Current CTL=RSS=0V Current Control Off Vtcl at TCL Time Threshold Voltage at TCL Vtclhy Current Control Off Time Hysteresis Voltage Off Time Input at TCL, output sink Vstl current: 2mA Saturation Voltage RSS>CTL Vcpi1 Current comparator at CCFB, Output Current RSSCTL Vcpv1 Current comparator at CCFB, Saturation Voltage sink current 1mA Current comparator at CCFB, Vcpv2 Saturation Voltage source current 1mA HALL SIGNAL (HU, HV, HW, FG) Hall High-State Input Vhah Voltage Vhal Hall Low-State Input Voltage Hall High-State Input Ihah Vha= 5V Current Ihal Hall Low-State Input Vha = 0V Current FG Output Saturation at FG, output sink Vsfg Voltage current : 2mA
1.15
1.22
1.29
V
-
0.15
0.5
V
-1 0.5 -
-
1 VCC1 -0.5 1.0 1.0 0.5
mA mA V V
2.0 -1.0 -
0 0 0.15
V V A A V
Rev.1.0, Sep.16.2003, page 11 of 40
M63155FP
Electrical characteristics
(Unless otherwise noted Ta=25C, VM=12V, VCC1=VCC2=5V)
Limits Symbol Parameter Conditions Min. 2.0 Vlg= 5V Vlg= 0V -1.0 3.2 Vls=11.5V -1 Typ. 100 0 0 0 0.7 Max. 1.0 150 2.8 1 1.2 Unit V V A A V V A A V LOGIC INPUT (DS, FR, BRS, BRK) Logic High-State Vlgh Input Voltage Vlgl Logic Low-State Input Voltage Logic High-State Ilgh Input Current Ilgl Logic Low-State LOGIC INPUT[Level shift] (PWM) Vlsh Logic High-State Input Voltage Logic Low-State Vlsl Input Voltage Ilsh Logic High-State Input Current
Ilsl Logic Low-State Vls=0V GATE DRIVE OUTPUTS (UT, VT, WT, UB, VB, WB) Top Side Gate Drive Vtoh=VGT-UT, VGT-VT, Vtoh VGT-WT High State Voltage Iload = -10 mA , Rg=0 Vtol Top Side Gate Drive Vtol=UT-U, VT-V, WTLow State Voltage W Iload = 10 mA , Rg=0 Bottom Side Gate Drive Vboh=VGB-UB, VGBVboh VB, VGB-WB High State Voltage Iload = -10 mA , Rg=0 Vbol Bottom Side Gate Drive Vbol=UB-RS, VB-RS, Low State Voltage WB-RS Iload = 10 mA , Rg=0 Ton Toff Ttr Ttf Tbr Tbf Turn-on Delay Turn-off Delay Top Side Switching Rise Time Top Side Switching Fall Time Bottom Side Switching Rise Time Bottom Side Switching Fall Time *Refer to the Fig.3. *Refer to the Fig.3.
-
0.25
0.40
V
-
0.7
1.2
V
-
0.25
0.40
V
-
150 100 200 80 200 80
-
nsec nsec nsec nsec nsec nsec
CL =1200pF, Rg=0 *Refer to the Fig.3.
-
CL=1200pF, Rg=0 *Refer to the Fig.3.
-
Rev.1.0, Sep.16.2003, page 12 of 40
M63155FP
Electrical characteristics
(Unless otherwise noted Ta=25C, VM=12V, VCC1=VCC2=5V)
5V
PWM
50%
50%
0V VA(*Note3) 90%
Vout(*Note2)
10% 0V Ton Tr Toff Tf
Fig.3 Gate Drive Output Time Characteristics Definition * Note2 : Vout is the external Nch MOS FET 's gate-source voltage. The definition is, UT-U, VT-V, WT-W, and U=V=W=VM=12V, Capacitor Load CL=1200pF. UB-RS, VB-RS, WB-RS, and RS=0V, Capacitor Load CL=1200pF. * Note3 : VA is the power supply voltage of the gate drive output. The definition is, VGT-VM=10.8V for UT-U, VTV, WT-W. VGB=12.2V for UB-RS, VB-RS, WB-RS. * Note4 : The waveform above-mentioned is one of the switching timing, because an gate drive output state is due to Hall sensor Amp. inputs. Please refer to the "Hall Signal Inputs and Motor Outputs Timing Diagram".
Rev.1.0, Sep.16.2003, page 13 of 40
M63155FP
Function Explanation
1. VM terminal (VM) The power supply for the M63155FP is connected between this terminal and GND. 2. VCC terminals (VCC1, VCC2) The 5V power supply for the M63155FP is connected between these terminals and GND. The VCC1 supplies small signal 5V, and the VCC2 supplies big signal 5V (for Charge Pump). *Notes: In order to ensure proper coast/braking operation even after detecting power loss, it is necessary to make the VCC1 supplies maintain externally. The state of the fault latch and the guaranteed function of other shutdown circuits is maintained by the charge held on Cvcc1. Therefore, the length of this extended operation is determined by the value of Cvcc1. The calculation method of a minimum value for Cvcc1, given a minimum hold-up time requirement (t). Coarse hold-up calculation Cvcc1(min) = t x iss / [Vcc1(nom) - Vcc1(min)] for C in farads: t = hold-up time (sec) iss = steady-state Vcc1 node current in fault mode (A) V = delta V from nominal to minimum (volts) 3. Hall Input Terminals (HU, HV, HW) These terminals are connected to the Hall effect commutation IC's output of the brushless motor, which have opencollector outputs. 4. Output Terminals (UT, VT, WT, U, V, W, UB, VB, WB) These terminals are the gate drive outputs for the external MOS FETs. UT, VT and WT are the gate drive outputs for the top side external MOS FETs. U, V and W are connected to the motor output terminals and the source terminals of the top side external MOS FETs. UB, VB and WB are the gate drive outputs for the bottom side external MOS FETs.
Rev.1.0, Sep.16.2003, page 14 of 40
M63155FP
Function Explanation
5. Oscillator (OSC1, OSC2, SGND) The oscillation frequency (Fosc) of the oscillator is determined by the external capacitor and resistor which are connected to these terminals. The capacitor is connected between OSC2 and SGND, and the resistor is connected between OSC1 and OSC2. SGND is the common terminal of the oscillator circuit. So it is connected to the root of the board GND due to getting the high accurate performance. The oscillation frequency theoretical value is given by:
(Fosc) 1 - 2 Rosc Cosc ln( 1 ) 2
Rosc : External resistance for oscillator Cosc : External condenser for oscillator
However, the actual oscillation frequency is different by influence of response of the oscillator circuit. The characteristic of the theoretical oscillation Frequency - the actual oscillation frequency is as follows (Fig.4).
Fosc [kHz] 1600 1400 1200 1000 800 600 400 200 0 1 1 0 Rosc [kohm] 100 theoretical value measurment value
TBD
Fig.4 The characteristic of oscillation frequency (Cosc=180pF)
Rev.1.0, Sep.16.2003, page 15 of 40
M63155FP 6. Charge Pump (CP1, CP2, VCP / CP3, CP4, VGB / CP5, CP6, VGT ) The charge pump consists of an internal circuit and two external capacitors. One capacitor should be connected between the CP1 (CP3/CP5) terminal and the CP2 (CP4/CP6) terminal, and the other capacitor should be connected between the VCP (VGB/VGT) terminal and GND. The VGB (VGT) (the output of the charge pump circuit) is connected internally to the source of the bottom side Pchannel pre-driver transistors. (the source of the top side P-channel pre-driver transistors.) So the bottom side gate drive transistors are powered by VGB and top side by VGT. The explanation of the charge pump function is as follows (Fig.5). And the characteristic of the PWM Input Frequency - the VGB(VGT) is as follows (Fig.6).
VCC2 (VCP/VGB) 1/Fosc 1/4*1/Fosc D1 OFF ON CP2 CP1 (CP3/CP5) (CP4/CP6) Cp1 (Cp2/Cp3) ON inverter OFF D2 VCC2 (CP2/VM) VCP (VGB/VGT)
Q1 Oscillator 1/4 Counter Q2
Ccp (Cgb, Cgt)
Fig.5 Charge Pump Circuit (1) Q1=OFF, Q2=ON The voltage of the CP2 terminal (Vcp2) is given by: Vcp2 = VCC2 - VF VF is the threshold voltage of the diodesD1, D2. At this time, a capacitor connected between the CP1 terminal and the CP2 terminal is charged up. (2) Q1=ON, Q2=OFF Then the Q1 and Q2 are switched (the Q1 is turned on and the Q2 is turned off). The Vcp2 is given by: Vcp2 = (VCC2 - VF) + VCC2 And the charge-pump voltage is given by: VCP = (VCC2 - VF) + VCC2 - VF = 2VCC2-2VF In case of VCC2=5V and VF=0.7V, VCP is 10-1.4=8.6V. (3) VGB, VGT Likewise VCP mentioned above, VGB and VGT voltage is given by: VGB = (CP2 - VF) + VCP - VF = CP2+VCP-2VF VGT = (VM - VF) + VGB - VF = VM+VGB-2VF
M63155FP Fpwm - VGB characteristic 15.6 15.4 15.2
M63155FP Fpwm - VGT characteristic at VM=12V 25.8 25.6 25.4 25.2 25 24.8 24.6 24.4 24.2 24 23.8 1
VGB (V)
15 14.8 14.6 14.4 14.2 1 10 Fpwm (kHz) 100 Cgs=470pF Cgs=1000pF Cgs=1500pF
VGT (V)
Cgs=470pF Cgs=1000pF Cgs=1500pF 10 Fpwm (kHz) 100
Fig.6 PWM Input Frequency (Fpwm) - VGB(VGT) characteristic
Rev.1.0, Sep.16.2003, page 16 of 40
M63155FP In case of VCC1=VCC2=5V, VM=12V, RST=PWM=FR=BRK=HV=5V, DS=BRS=HU=HW=0V,Cp1~3=470nF, Ccp=Cgt= 4.7F, Cgb=33F, Fosc=8MHz 7. 5V Regulator (REGE, REGB, REGC, REGR, REGL) The 5V regulator with the external PNP Tr. included the internal gain resistors. It has the output current limit function which needs the external current sensing resistor . The explanation of the 5V Regulator function is as follows (Fig.7).
VM RSR REGE REGB REGL REGR 5V REGC +
+ +
[V] REGC (5V)
-
0
Ilim
[A]
The limit current value is given by:
-
(Limit Current)
Vlim RSR
Vlim : 5V Regulator Rs threshold voltage (typ; 1.0V) RSR : 5V Regulator current sensing resistor value
Fig. 7 5V Regulator application circuit and characteristics
Rev.1.0, Sep.16.2003, page 17 of 40
M63155FP 8. Current Control (RSS, RSM, CTL, TCL) RSS is the sensing input of the motor current. A filter resistor(Rnf) should be connected between this terminal and the RSM terminal. A sensing resistor(RS) should be connected between the RSM and motor ground. The current control circuit compares the voltage of the sensing resistor(RS) with the CTL terminal input voltage. When the motor current reaches the threshold voltage (the CTL terminal input voltage), the current control circuit shuts down the motor current with turning off the external FETs during the constant period determined by the external elements on the TCL terminal. This function acts independent of the PWM input signal. If the motor current is controlled by the only PWM input signal, this current control circuit acts as a motor current limit protection circuit. In this case, the motor current limit value could be determined by the CTL input voltage.
(1) Current control function
Vctl /Rs
Motor Current
The motor current is controlled by the CTL input voltage. When the motor current reaches the threshold voltage, the motor current is shut down while the constant period. The period of the motor shutting down is given by:
Toff Constant (Tcl)
5V typ. 12V typ.
zero
- M63155FP -
(Off Time)
Rcl Ccl ln(
VCC1 Vtcl ) VCC1
VCC1 /VCC2
Rcl
VM
Rcl : Current control Off Time Resistance Ccl : Current control Off Time Condenser Vtcl : Current control Off Time Threshold Voltage (typ; 2.5V)
The motor control current value is given by:
M
CTL
Vctl
from MCU
(Control Current)
RSM RSS Cnf Rnf RS
Rcin
Ccl
TCL
Vctl Rs
Vctl : CTL terminal input voltage (from MCU) Rs : Motor current sensing resistor value
The CTL input resistor(Rcin) sets the same value of the limit sensing low pass filter resistor(Rnf) to compensate the input impedance of current comparator.
(2) Current limit function
PWM Input Motor Current
5V typ. 12V typ.
The Current control circuit could be acted as the current limit protection circuit. In this case, the motor current is controlled by the PWM input duty. The value of the motor current limit is given by:
(Limit Current) Vref Rct2 1 Rct1 Rct2 Rs
- M63155FP -
VCC1 /VCC2
Rct1 Rct2
VM
Vref : output voltage (ex.; VCC1=5V) Rct1, Rct2 : VCC1 into CTL dividing resistor value Rs : Motor current sensing resistor value
Rcin
Ccl
Rev.1.0, Sep.16.2003, page 18 of 40
Rcl
M
CTL TCL RSM RSS Cnf Rnf RS
When the motor current reaches the limit current value, the motor current is shut down while the constant period like as above mentioned in "(1) Current control function". The CTL input resistor(Rcin) sets the below equation value to compensate the input impedance of current comparator.
Rcin (Rct1//Rct2) Rnf
Rct1, Rct2 : VCC1 into CTL dividing resistor value Rnf : Limit sensing low pass filter resistor value
Fig. 8 Motor Current Control Function
M63155FP 9. Current Decay Method (DS) The current decay method is determined by the input into the DS terminal. In slow-decay mode, only the high side MOS FET is switched open during a PWM OFF (Low) cycle. The fast-decay mode switches both the high and low side MOS FETs. Table 1. gives the DS selection truth table. TABLE 1.
DS High Low
DS Selection Truth Table
Function Mode Slow-Decay Fast-Decay
The output MOS FETs are controlled by PWM signal as follows.
D3
Q1 D2 Q2
I1
Q3
Q5 VM
Q1 D2 Q2
I1
Q3
Q5 VM
I2
Q4
Q6
Q4 I2
Q6
RS
RS
(1)Condition: Q1 is ON and Q4 is ON. (PWM ON period) The motor current I1 goes to RS through the transistors Q1 and Q4. (2)Condition: Q4 is ON and Q2, Q1 are OFF. (PWM ON -> OFF switching period) The discharge current I2 goes through the diode D2. This diode is a parasitic diode of the output power FET. (3)Condition: Q4 is ON and Q2, Q1 are OFF. (PWM OFF period) The discharge current I2 keeps going through the diode D2. Q2 keeps being OFF. (4)Condition: Q4 is ON and Q2, Q1 are OFF. (PWM OFF -> ON switching period) Likewise state (3), the discharge current I2 keeps going through the diode D2. Q2 keeps being OFF.
(1)Condition: Q1 is ON and Q4 is ON (PWM ON period) The motor current I1 goes to RS through the transistors Q1 and Q4. (2)Condition: Q1, Q4, Q2 and Q3 are OFF. (PWM ON -> OFF switching period) The discharge current I2 goes through the diode D2 and D3. This diode is a parasitic diode of the output power FET. (3)Condition: Q1, Q4, Q2 and Q3 are OFF. (PWM OFF period) The discharge current I2 keeps going through the diode D2 and D3. (4)Condition: Q1, Q4, Q2 and Q3 are OFF. (PWM OFF -> ON switching period) Likewise state (2), the discharge current I2 goes through the diode D2 and D3.
* When all the output power FETs are OFF, for example as the phase change, the discharge current goes to VM through these parasitic diodes.
a) Slow-Decay Function
b) Fast-Decay Function
Fig. 9 Current Decay Method at the MOS FETs Control with PWM Signal
Rev.1.0, Sep.16.2003, page 19 of 40
M63155FP 10. Braking Mode Enable (BRK) In the normal motor rotation, the motor is able to be braked optionally by external control signal put into the BRK terminal. The braking mode, either coast (free-run) or brake (short-brake) is selected by the BRS terminal (cf. 12. Brake Mode Selection -1)). Table 2. gives the BRK selection truth table. TABLE 2.
BRK High Low
BRK Selection Truth Table
Function Mode Normal Control Mode Brake Mode
11. Voltage Monitor (VM, SVCC, FLT) If either the motor power supply (VM) or the 5V (SVCC) or both drops below the threshold, FLT is "Low". At this time, the BRS state (cf. 12. Braking Mode Selection) is latched by this FLT "L" signal and keeps its state. (a detailed explanation is given under item "18. Protection circuit" on page 23.) Then, the return of the FLT is decided by conditions of the Voltage Monitor comparator output and Reset input (RST).
(normal) (normal) (fault) H H L H H L RST:L FLT:Low latch FLT:latch cancel
SVcc or VM
SVcc or VM
H
(fault) H L H H L L
RST FLT
RST FLT
RST:L FLT:High
RST:H and Voltage fault keeps FLT:latch cancel
Fig.10 Voltage Monitor Circuit & Timing Chart
Rev.1.0, Sep.16.2003, page 20 of 40
M63155FP 12. Braking Mode Selection (BRS) 1) In the normal mode (FLT output is "H") The braking mode whether coast (free-run) or brake (short-brake) is selected by the BRS terminal. In the coast (free-run) mode, all of the output terminals are floating. On the other side, in the brake (short-brake) mode, all of the top side MOS FETs are turned off and all of the bottom side MOS FETs are turned on. This Braking Mode provides a braking torque which depends on the motor speed. 2) In the fault mode (FLT output is "L") In this case, the braking mode whether coast or brake is selected by the PWM signal irrelevant to the BRK signal and the Current Control (RSS, CTL, TCL) function. The BRS state is latched by the FLT "L" signal. In the BRS "L" state the coast mode is selected, while in the BRS "H" state the PWM signal determines the brake mode. And at this time, the positive power supply for the gate of the bottom side MOS FETs is provided by the chargepump external capacitor (Cgb; cf. Application circuit). If gate drive to the bottom side MOS FETs is chopped via external control of the PWM pin, the minimum value for Cgb is given in the following formula. Coarse Cgb calculation Cgb(min)= t x f x 3q(gate) / [Vcgb(initial) - Vcgb(final)] for C in farads: t = soft braking time (sec) f = a chop frequency for PWM pin (Hz) q(gate) = a electric charge stored in MOS FET gate (C) q(gate) : refer to the data sheet of selected MOS FET * In brake mode, the three bottom side MOS FETs(UB,VB,WB) turns on simultaneously. So, it is needed by 3q(gate). Vcgb = delta V from initial to final (volts) Table 3. gives the BRS selection truth table. TABLE 3.
BRS High Low
BRS Selection Truth Table
normal mode (FLT;H) BRK; H Normal Normal BRK; L Brake Coast fault mode (FLT;L) PWM; H Brake Coast PWM; L Coast
13. Reset input (RST) This input used to enable the device. The "H" input allows the gate drive output to follow "Motor I/O truth table". The "L" input forces all gate drive output to 0V, coast(free-run) mode, and overrides the BRK state. And this "L" input also resets the BRS state latched by the FLT "L" signal. Table 4. gives the RST selection truth table. TABLE 4.
RST High Low
RST Selection Truth Table
Function Mode Enable the device Disable the device (Reset the BRS and FLT state)
Rev.1.0, Sep.16.2003, page 21 of 40
M63155FP 14. Motor Rotation Direction (FR) With the FR input at logic "High", the circuits are allowed to follow the commutation sequence for the motor rotation in the forward direction. With the FR input at logic "Low", the internal switching matrix logic is inverted to drive the motor in the reverse rotation. Table 5. gives the FR selection truth table. TABLE 5.
FR High Low
FR Selection Truth Table
Function Mode Forward Rotation Reverse Rotation
The relationship of the Hall sensors and the rotor of the motor is as follows.
Hall sensors
V W U V W U W V U
Outer rotor REVERSE
FORWARD
Fig. 11 Motor Rotation Direction 15. Motor Rotation Speed Signal (FG) The FG terminal is connected to the output of the internal tachometer which generates 3 pulse signal per electrical revolution from the Hall sensor inputs. The relationship between the motor rotation speed and FG output signal frequency is given by;
(Motor speed [rpm]) fFG x60 1 Npx 2x 3
fFG : FG output signal frequency [Hz] Np : Motor pole number
16. PWM Input (PWM) In the normal mode (FLT is "H"), the PWM signal is applied to this terminal to control the motor speed. The motor speed is due to the duty of the PWM input signal. On the other side, in the case of the FLT "L" state and the BRS "H" state, the PWM signal determines the brake mode. (cf. 11. Voltage Monitor (VM, SVCC, FLT)). Table 6. gives the PWM selection truth table. TABLE 6.
PWM High Low
PWM Selection Truth Table
Function Mode Normal circulate current Recirculate current
17. Disable FET Voltage Monitors Input (FCE) Usually, FCE is set "L". When fail of external FETs gate voltage or D-S voltage is detected, the FCE can be set "H" to disable the external voltage check. Detail explanation is shown in 5)D-S voltage monitor and 6)External FETs gate voltage monitor on page 23.
Rev.1.0, Sep.16.2003, page 22 of 40
M63155FP 18. Protection circuit 1) VM voltage monitor (VM: Motor supply voltage) If VM drops below the Vthm, FLT is "L". Then the return of the FLT is decided by Vthm+Vmhy and RST toggled(H-L-H) . Detail drawing are in Fig.10 on page 20 and in Fig.24,25 on page 27. 2) SVCC voltage monitor (SVCC: External 5V power supply) If SVCC drops below the Vths,FLT is "L". Then,the return of the FLT is decided by Vths+Vshy and RST toggled(H-L-H). Detail drawing are in Fig.10 on page 20 and in Fig.24,25 on page 27. For relationships between protection and FLT output refer to Fig.18 on page 24. 3) TSD (Thermal shut down) This function is for thermal protection. The Thermal Shut Down (TSD) circuit has a thermal sensor for the junction temperature of the device. If the temperature goes above the TSD function start temperature, the TSD circuit shut down the high-side Motor Pre-drive circuit and sets the fault latch. Once the TSD circuit start the shut down function, it continues to the TSD function stop temperature. The Table 7. gives the TSD function start / stop temperatures. TABLE 7.
Parameter Function Start temperature Function Stop Temperature * Note5:
Thermal Shut Down Truth Table
Typical Value 140 110 Units degrees centigrade degrees centigrade
These TSD temperature are the target temperatures for circuit design, not the guaranteed value.
4) HALL code check If all halls are "H" or "L", FLT is "L". Then,the return of the FLT is decided by RST toggled (H-L-H). Detail drawing are in Fig.10 on page 18 and in Fig.24,25 on page 27. 5) D-S voltage monitor (Drain-source voltage monitor of Top side External FETs) In case of Fig.20 on page 25, FLT is "L". The timing to check the Drain-source voltage refer to Fig.21 on page 25. Then, the return of the FLT is decided by RST toggled (H-L-H). Detail drawing are in Fig.10 on page 20 and in Fig.24,25 on page 27. The protection circuit is disable by setting a FCE pin to "H". Detail drawing are in Fig.22 on page 26. 6) External FETs gate voltage monitor (Voltage of the hi-side FETs gate x3, Voltage of the low-side FETs gate x3) The timing that each External FET is ON,If each gate voltage does'nt come to threshold,FLT is "L". The timing to check each gate voltage refer to Fig.19 on page 24 . Then, the return of the FLT is decided by RST toggled (H-L-H). Detail drawing are in Fig.10 on page 20 and in Fig.24,25 on page 27. The protection circuit is disable by setting a FCE pin to "H". Detail drawing are in Fig.23 on page 26.
Rev.1.0, Sep.16.2003, page 23 of 40
M63155FP
Motor supply voltage VM Vthm External 5V power supply SVCC (or REGC; the 5V Regulator output) Vths Voltage by temperature TSD Vtht Invalid HALL Cords Drain-Source voltage monitor VDSM-U of Top side External FET.
HALL
+
a
+
b
*Note:This function is guaranteed during Absolute Maximam Rating on page 3.
+
c
d
FLT open drain output
l m n L M N
+
e
M1
Vthds
mask1
UT
Voltage of the hi-side FETs gate
VT WT
UVWT
+
Vthug Voltage of the low-side FET gate
UB
+
f
M2
mask2
g
M3
Voltage of the low-side FET gate
VB
+
mask3
h
M4
Voltage of the low-side FET gate
WB
mask4
+
i
M5
Vthlg Reset input RST
FCE
mask5
Fig.18 relations between each protections and FLT output
PWM is off.
Voltage of Phase U Voltage of Phase V Voltage of Phase W Selecting switch point for Hi-side FETs gate M2 (mask signal)
Monitoring timing
L
M
N
L
M3 (mask signal) M4 (mask signal) M5 (mask signal)
1.54 - 2.5uS moving Braking
Fig.19 Timing chart of gate voltage monitor in Fast Decay
Rev.1.0, Sep.16.2003, page 24 of 40
M63155FP
For example: If point-B is shorted GND, voltage(point-A) between external drain and source voltage reach to more than 1V during turn-on. So Drain-Source voltage monitor circuit senses voltage of point-A. But this circuit can't do perfect detecting shorted winding coil to GND. VM Drain-Source voltage monitor
At Point-e in Fig.22 on page 22
Off
Off
On
More than 1V
l
Q5
Q3
Q1
m n
Phase W
Phase V
Phase U
Refer to Fig.21 on page 23
Q6
Off On
Q4
Q2
Off
B
RS
Over load current
Fig.20 Drain-Source voltage monitor of external FETs
PWM is off
Voltage of Phase U Voltage of Phase V Voltage of Phase W Selecting switch point for Hi-side FETs gate M1 (mask signal)
1.54 - 2.5uS Monitoring timing moving Braking
l
m
Fig.21 Timing of drain-source voltage monitor
Rev.1.0, Sep.16.2003, page 25 of 40
+
A
To FLT Vthds
>
M1
n
l
M63155FP
PWM is off.
Voltage of Phase U Voltage of Phase V Voltage of Phase W Selecting switch point for Hi-side FETs gate M2 (mask signal)
Monitoring timing
L
M
N
L
M3 (mask signal) M4 (mask signal) M5 (mask signal)
1.54 - 2.5uS moving Braking
FCE(pin22)
Disabled
Fig.22 Timing chart of gate voltage monitor in Fast Decay
PWM is off
Voltage of Phase U Voltage of Phase V Voltage of Phase W Selecting switch point for Hi-side FETs gate M1 (mask signal)
1.54 - 2.5uS Monitoring timing moving Braking
l
m
n
l
FCE(pin22)
Disabled
Fig.23 Timing of drain-source voltage monitor
Rev.1.0, Sep.16.2003, page 26 of 40
M63155FP
Function Explanation
4.35V 4.35V 4.25V 4V 0V (normal) 5V 4.25V
SVCC
A*
(fault) H H L H H L H L H
(fault) H L
RST L FLT BRS latch timing Condition:
BRS="L",PWM="H"
L
L
No latching
Latching BRS="L"
Ex. FETs condition
Coast
Active
Coast
Active
Coast
Fig.24 Timing chart in power on and off (Pattern A)
5V
4.35V 4.35V 4.25V 4V 0V (normal)
4.25V
SVCC
A*
(fault) H H L H L H L H L H
(fault) H L H LL L H
RST L FLT BRS latch timing Condition:
BRS="H",PWM="H"
L
No latching
Latching BRS="H"
Ex. FETs condition
Coast
Active
Coast
Active
Brake
Fig.25 Timing chart in power on and off (Pattern B) A*: VM, TSD, HALL, VDSM-U, UT, VT, WT, UB, VB and WB in Fig. 18 on page 24
Rev.1.0, Sep.16.2003, page 27 of 40
M63155FP 19. Power Loss Brake In Power Loss Brake, calculation of capacitor value is show by Fig.26, and Block diagram of VGB line is Show by Fig.27.
When mode is Power Loss Brake, low side pre. calculation of VGB capacitor value is as follows.
Condition
Supplying Current to pre driver. A=(122 x 2) pC (At once PWM) B=14 A (At Constant current) D=47 A (Max. current) Capacity of External FET C=740 pF ( External FET capacity)
For example calculation of PWM for 3 phases
PWM Function Time VGB voltage External FET capacity
:50 cycles :500mS :8.5V -> 6.8V :740pF
Refer to fig.1 about A, B, C and D
Charge value for A (3 phase), B (3 phase), D(1 ch) A x 50 x 3 + B x 500mS x 3 + D x 500mS = 36.6 nC + 21 C + 23.5 A = 44.54 C Charge value for C (3 phase) (740pF x 50) x (8.5 + 6.8) x 3 / 2 = 849.3 nC C = 849.3 nC Capacity value for A,B,C (3 phase) (A + B + C + D) / (8.5V - 6.8V) = 45.39 C / 1.7V = 26.7 F
Fig.26 Calculation of VGB current at Power Loss Brake
When mode is Power Loss Brake, low side pre. driver circuit was driven by current of VGB capacitor.
Soft braking M63155FP VM Pre. Driver for Top side FET UT U VGB D I/F Pre. Driver for Bottom side FET B A 27uF UB RSM C 740pF 8.5V 6.8V On Off VGT
VM
(Top-side-MOS) Phase-U
One time Off On
(Bottom-side-MOS)
Fig.27 Block diagram of Pre Driver
Rev.1.0, Sep.16.2003, page 28 of 40
M63155FP
Motor Input/Output Truth Table
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 Input DS FR BRK BRS PWM H H H H/L H H H H H/L L H H H H/L H H H H H/L L H H H H/L H H H H H/L L H H H H/L H H H H H/L L H H H H/L H H H H H/L L H H H H/L H H H H H/L L H H H H/L H H H H H/L L H H H H/L H H H H H/L L H H L H H H H L H L H H L H H H H L H L H H L H H H H L H L H H L H H H H L H L H H L H H H H L H L H H L H H H H L H L H H L H H H H L H L H H L H H H H L H L H H L L H H H L L L H H L L H H H L L L H H L L H H H L L L H H L L H H H L L L H H L L H H H L L L H H L L H H H L L L H H L L H H H L L L H H L L H H H L L L H L H H/L H H L H H/L L H L H H/L H H L H H/L L H L H H/L H H L H H/L L H L H H/L H H L H H/L L H L H H/L H H L H H/L L H L H H/L H H L H H/L L H L H H/L H H L H H/L L H L H H/L H H L H H/L L HU HV HW UT UB VT H H H L L L H H H L L L H L H L H H H L H L H L H L L L H L H L L L H L H H L L L L H H L L L L L H L H L L L H L L L L L H H H L L L H H L L L L L H L L H L L H L L L L L L L L L L L L L L L H H H L H L H H H L H L H L H L H L H L H L H L H L L L H L H L L L H L H H L L H L H H L L H L L H L L H L L H L L H L L H H L H L L H H L H L L L H L H L L L H L H L L L L L H L L L L L H L H H H L L L H H H L L L H L H L L L H L H L L L H L L L L L H L L L L L H H L L L L H H L L L L L H L L L L L H L L L L L H H L L L L H H L L L L L H L L L L L H L L L L L L L L L L L L L L L H H H L L L H H H L L L H L H H L L H L H L L L H L L H L L H L L L L L H H L L L H H H L L L L L H L L H H L H L L H L L H H L H L L H H L H L L L H L L L L L H L L L L L L L L L L L L L L L Output VB WT WB FG L L L H L L L H L L L L L L L L L H L H L L L H H H L L H L L L H L L H H L L H L L H L L L H L L L H H L L H H L L L L L L L L H L H H H L H H H L H L H L H L H L H H H L H H H L H L H L H L H L H H H L H H H L H L H L H L H L H H H L H H H L H L H L H L L L L H L L L H L L L L L L L L L L L H L L L H L L L L L L L L L L L H L L L H L L L L L L L L L L L H L L L H L L L L L L L L L L L H L L L H H L L L H L L L L L H H L L H H L L H L L L H L L L L H L L L H L H L L L L L L H H L H H L L H L L L L L L L L Condition
Regular mode *Rotate Direction ; Forward *Current Decay MODE ; Slow Decay *non-Brake-state
Regular mode *Rotate Direction ; Forward *Current Decay MODE ; Slow Decay *Short-Brake-State
Regular mode *Rotate Direction ; Forward *Current Decay MODE ; Slow Decay *Free-Run-State
Regular mode *Rotate Direction ; Reverse *Current Decay MODE ; Slow Decay *non-Brake-state
Rev.1.0, Sep.16.2003, page 29 of 40
M63155FP
Motor Input/Output Truth Table
No. 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 Input DS FR BRK BRS PWM H L L H H H L L H L H L L H H H L L H L H L L H H H L L H L H L L H H H L L H L H L L H H H L L H L H L L H H H L L H L H L L H H H L L H L H L L H H H L L H L H L L L H H L L L L H L L L H H L L L L H L L L H H L L L L H L L L H H L L L L H L L L H H L L L L H L L L H H L L L L H L L L H H L L L L H L L L H H L L L L L H H H/L H L H H H/L L L H H H/L H L H H H/L L L H H H/L H L H H H/L L L H H H/L H L H H H/L L L H H H/L H L H H H/L L L H H H/L H L H H H/L L L H H H/L H L H H H/L L L H H H/L H L H H H/L L L H L H H L H L H L L H L H H L H L H L L H L H H L H L H L L H L H H L H L H L L H L H H L H L H L L H L H H L H L H L L H L H H L H L H L L H L H H L H L H L HU HV HW UT UB VT H H H L H L H H H L H L H L H L H L H L H L H L H L L L H L H L L L H L H H L L H L H H L L H L L H L L H L L H L L H L L H H L H L L H H L H L L L H L H L L L H L H L L L L L H L L L L L H L H H H L L L H H H L L L H L H L L L H L H L L L H L L L L L H L L L L L H H L L L L H H L L L L L H L L L L L H L L L L L H H L L L L H H L L L L L H L L L L L H L L L L L L L L L L L L L L L H H H L L L H H H L L L H L H L H H H L H L L L H L L L H L H L L L L L H H L L L L H H L L L L L H L H L L L H L L L L L H H H L L L H H L L L L L H L L H L L H L L L L L L L L L L L L L L L H H H L H L H H H L H L H L H L H L H L H L H L H L L L H L H L L L H L H H L L H L H H L L H L L H L L H L L H L L H L L H H L H L L H H L H L L L H L H L L L H L H L L L L L H L L L L L H L Output VB WT WB FG H L H H H L H H H L H L H L H L H L H H H L H H H L H L H L H L H L H H H L H H H L H L H L H L H L H H H L H H H L H L H L H L L L L H L L L H L L L L L L L L L L L H L L L H L L L L L L L L L L L H L L L H L L L L L L L L L L L H L L L H L L L L L L L L L L L H L L L H L L L L L L L L L H L H L L L H H H L L L L L L H L L H L L L H L L H L L L L L L L H H L L L H L L L L L L L L H L H H H L H H H L H L H L H L H L H H H L H H H L H L H L H L H L H H H L H H H L H L H L H L H L H H H L H H H L H L H L H L Condition
Regular mode *Rotate Direction ; Reverse *Current Decay MODE ; Slow Decay *Short-Brake-state
Regular mode *Rotate Direction ; Reverse *Current Decay MODE ; Slow Decay *Free-Run-state
Regular mode *Rotate Direction ; Forward *Current Decay MODE ; Fast Decay *non-Brake-state
Regular mode *Rotate Direction ; Forward *Current Decay MODE ; Fast Decay *Short-Brake-state
Rev.1.0, Sep.16.2003, page 30 of 40
M63155FP
Motor Input/Output Truth Table
No. 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 Input DS FR BRK BRS PWM L H L L H L H L L L L H L L H L H L L L L H L L H L H L L L L H L L H L H L L L L H L L H L H L L L L H L L H L H L L L L H L L H L H L L L L H L L H L H L L L L L H H/L H L L H H/L L L L H H/L H L L H H/L L L L H H/L H L L H H/L L L L H H/L H L L H H/L L L L H H/L H L L H H/L L L L H H/L H L L H H/L L L L H H/L H L L H H/L L L L H H/L H L L H H/L L L L L H H L L L H L L L L H H L L L H L L L L H H L L L H L L L L H H L L L H L L L L H H L L L H L L L L H H L L L H L L L L H H L L L H L L L L H H L L L H L L L L L H L L L L L L L L L H L L L L L L L L L H L L L L L L L L L H L L L L L L L L L H L L L L L L L L L H L L L L L L L L L H L L L L L L L L L H L L L L L Output HU HV HW UT UB VT VB WT WB FG H H H L L L L L L H H H H L L L L L L H H L H L L L L L L L H L H L L L L L L L H L L L L L L L L H H L L L L L L L L H H H L L L L L L L L H H L L L L L L L L L H L L L L L L L H L H L L L L L L L H L H H L L L L L L L L H H L L L L L L L L L H L L L L L L H L L H L L L L L L H L L L L L L L L L L L L L L L L L L L L H H H L L L L L L H H H H L L L L L L H H L H H L L H L L L H L H L L L L L L L H L L H L L L L H H H L L L L L L L L H H H L L L H L L H L H H L L L L L L L L L H L L H H L L L H L H L L L L L L L H L H H L H L L H L L L H H l L L L L L L L L H L L L H H L H L L H L L L L L L H L L L L L L L L L L L L L L L L L L L L H H H L H L H L H H H H H L H L H L H H H L H L H L H L H L H L H L H L H L H L H L L L H L H L H H H L L L H L H L H H H H L L H L H L H L H H L L H L H L H L L H L L H L H L H H L H L L H L H L H H L H H L H L H L H L L H H L H L H L H L L L H L H L H L H H L L H L H L H L H H L L L L H L H L H L L L L L H L H L H L H H H L L L L L L H H H H L L L L L L H H L H L L L L L L L H L H L L L L L L L H L L L L L L L L H H L L L L L L L L H H H L L L L L L L L H H L L L L L L L L L H L L L L L L L H L H L L L L L L L H L H H L L L L L L L L H H L L L L L L L L L H L L L L L L H L L H L L L L L L H L L L L L L L L L L L L L L L L L L L L Condition
Regular mode *Rotate Direction ; Forward *Current Decay MODE ; Fast Decay *Free-Run-state
Regular mode *Rotate Direction ; Reverse *Current Decay MODE ; Fast Decay *non-Brake-state
Regular mode *Rotate Direction ; Reverse *Current Decay MODE ; Fast Decay *Short-Brake-state
Regular mode *Rotate Direction ; Reverse *Current Decay MODE ; Fast Decay *Free-Run-state
Rev.1.0, Sep.16.2003, page 31 of 40
M63155FP
I/O Circuit
< UT, U, VT, V, WT, W >
VGT
< VM, VCC2, CP1, CP2, VCP, CP3, CP4, VGB, CP5, CP6, VGT >
VCC2 VM
VCP VM UT, VT, WT CP1 U, V, W CP2 CP3 CP4
VGB
VGT CP5 CP6
< UB, VB, WB, RSM >
VGB
< REGC >
VM
< REGR >
VM
< REGE >
VM
UB, VB, WB
19K
REGR REGC
800
REGE
2K
RSM
17K
< REGB >
VM
< REGL >
VM
< CTL >
VCC1
< TCL >
VCC1
< RSS >
VM VCC1
50K
REGB
REGL
1K
CTL
2K 2K
TCL
RSS
2K
< OSC1 >
VCC1
< OSC2 >
VCC1
< SGND >
VCC1
< BRK, BRS, DS, FR, RST, FCE >
VCC1
60K
OSC1
OSC2
5K
30K 90K
BRK,BRS, DS, FR,RST, FCE
2K
SGND
48K
Rev.1.0, Sep.16.2003, page 32 of 40
M63155FP
I/O Circuit
< HU, HV, HW >
VCC1
< FLT, FG >
VCC1
< SVCC >
VCC1
HU, HV, HW
2K
SVCC FLT, FG
74.4K
25.6K

VCC1

VGB
200K
CCFB
PWM
2K
Rev.1.0, Sep.16.2003, page 33 of 40
M63155FP
Hall Inputs and Motor Outputs Timing Chart
HU
Hall Input (120 deg.)
HV HW
U
PWM PWM
PWM PWM
Motor Output Voltage
V
PWM PWM PWM PWM
PWM PWM
PWM PWM PWM PWM
W
U Motor Output Voltage
(PWM Duty 100%) V
W
0
180
360
540
720
Electrical Revolution angle [degree]
* Note6 : These are the timing chart of the Hall commutation sensor outputs and the motor outputs, and the motor output voltage waveforms only show the High/Low/Middle state in each period. In details, these output voltage waveforms are different from the real waveforms of the actual motor outputs under rotation.
Rev.1.0, Sep.16.2003, page 34 of 40
M63155FP
Application Circuit 1
* Motor current is controlled by D/A signal input level
5V
Cregc
+ +
VM(10~40V)
+
RSR Creg1 Creg2
+
Cvcc2 VCC2 VCC1
Cvcc1 SVCC
5V Monitor TSD Monitor
Cvm
OSC1 Rosc OSC2 Oscillator SGND
REGL REGR REGC REGB
5V Regulator A B C D
Bandgap Reference
VGB Monitor VGT Monitor Hall Monitor D-S Monitor VM Monitor
REGE
Cgt ZD4 Cp3
+
VGT VM CP6 CP5 VGB
charge pump for upper gate
B D
UT U
Rg1
ZD1
FET1
SD1 Ro1 Rgs1
Cgb ZD5
+
A UB FET2
Rg2
CP4 B Cp2 CP3 VCP
+
VT D V
Rg3
Rpwm Ccp
charge pump for lower gate 2
ZD2
120 / 60 degree Switching Matrix / Pre-Driver
FET3
SD2 Ro2 Rgs2
M
FET4
CP2 Cp1 CP1
A VB
Rg4
charge pump for lower gate 1
B D
WT W
Rg5
ZD3
FET5
SD3 Ro3 Rgs3
FLT Rflt
BRS reset PWM Duty Enable Coast / Brake Select Coast or Brake Rotation Polarity Decay Mode Select Voltage monitor error
Input Logic Circuit (latched BRS)
A
WB
Rg6
RST PWM BRK BRS FR DS
FET6 Rnf RS Cnf
RSM RSS
Ri
PWM off time control
CCFB
Rev.1.0, Sep.16.2003, page 35 of 40
+
Toff circuit
-
MCU
C
Hall Inputs
HU
Rh1 Hall IC Rh2 Hall IC Rh3 Hall IC
FG output
FG
FG (Tacho Meter)
C
HV
Rfg FCE
C
HW
Rcin
Rcl Ccl
CTL
Motor current control
TCL
Current Control
GND Rfb
GND
M63155FP
Application Circuit 2
* Soft brake in power loss.
5V
0V
Cregc
VM(10~40V)
0V
+
+
+
RSR Creg1 Creg2
+
Cvcc2 VCC2 VCC1
Cvcc1 SVCC
5V Monitor TSD Monitor
Cvm
OSC1 Rosc OSC2 Oscillator SGND
REGL REGR REGC REGB
5V Regulator A B C D
Bandgap Reference
VGB Monitor VGT Monitor Hall Monitor D-S Monitor VM Monitor
REGE
Cgt ZD4 Cp3
+
VGT VM CP6 CP5 VGB
charge pump for upper gate
B D
UT U
Rg1
ZD1
FET1
SD1 Ro1 Rgs1
Cgb ZD5
+
A UB FET2
Rg2
CP4 B Cp2 CP3 VCP
+
VT D V
Rg3
Rpwm Ccp
charge pump for lower gate 2
ZD2
120 / 60 degree Switching Matrix / Pre-Driver
FET3
SD2 Ro2 Rgs2
M
FET4
CP2
A VB
Rg4
PWM off time control
CCFB
Rev.1.0, Sep.16.2003, page 36 of 40
+
Toff circuit
-
MCU MCU
Cp1
CP1
charge pump for lower gate 1
B D
WT W
Rg5
ZD3
FET5
SD3 Ro3 Rgs3
FLT Rflt
BRS reset PWM Duty Enable Coast / Brake Select Coast or Brake Rotation Polarity Decay Mode Select Voltage monitor error
Input Logic Circuit (latched BRS)
A
WB
Rg6
RST PWM BRK BRS FR DS
FET6 Rnf RS Cnf
RSM RSS
Ri
C
Hall Inputs
HU
Rh1 Hall IC Rh2 Hall IC Rh3 Hall IC
FG output
FG
FG (Tacho Meter)
C
HV
Rfg FCE
C
HW
Rcin
CTL
Motor current control
Rcl Ccl
TCL
Current Control
GND Rfb
GND
M63155FP
Application Circuit 3
* Motor current is controlled by PWM pulse input duty
5V
Cregc
+ +
VM(10~40V)
RSR Creg1 Creg2 SVCC
5V Monitor TSD Monitor
+
+
Cvcc2 VCC2 VCC1
Cvcc1
Cvm
OSC1 Rosc OSC2 Oscillator SGND
REGL REGR REGC REGB
5V Regulator A B C D
Bandgap Reference
VGB Monitor VGT Monitor Hall Monitor D-S Monitor VM Monitor
REGE
Cgt ZD4 Cp3
+
VGT VM CP6 CP5 VGB
charge pump for upper gate
B D
UT U
Rg1
ZD1
FET1
SD1 Ro1 Rgs1
Cgb ZD5 Cp2
+
A UB FET2
Rg2
CP4 B CP3 VCP
+
VT D V
Rg3
charge pump for lower gate 2
ZD2
120 / 60 degree Switching Matrix / Pre-Driver
FET3
SD2 Ro2 Rgs2
Ccp
M
FET4
CP2 Cp1 CP1
A VB
Rg4
charge pump for lower gate 1
B D
WT W
Rg5
ZD3
FET5
SD3 Ro3 Rgs3
FLT Rflt
BRS reset PWM Duty Enable Coast / Brake Select Coast or Brake Rotation Polarity Decay Mode Select Voltage monitor error
Input Logic Circuit (latched BRS)
A
WB
Rg6
RST PWM BRK BRS FR DS
FET6 Rnf RS Cnf
RSM RSS
Ri
PWM off time control
CCFB
Rev.1.0, Sep.16.2003, page 37 of 40
+
Toff circuit
-
MCU
C
Hall Inputs
HU
Rh1 Hall IC Rh2 Hall IC Rh3 Hall IC
FG output
FG
FG (Tacho Meter)
C
HV
Rfg FCE
C
HW
Rct1 Rct2
Rcin
CTL
Motor current control
Rcl Ccl
TCL
Current Control
GND Rfb
GND
M63155FP
Reference Values of the External Parts
Value External Parts Name Cvm FET1~FET6 Rg1~Rg6 Ro1~Ro3 Rgs1~Rgs3 SD1~SD4 ZD1~ZD5 RS Rnf Cnf Rh1~Rh3 Ccp, Cgt Cgb Notes Bypass Condenser for VM Nch Power MOS FET Gate Resistances of FETs Output Resistances for Motor Coils Gate-Source Resistances of FETs Schottky Diode Zener Diode Motor Current Sensing Resister RS terminal Filtering Resister RS terminal Filtering Condenser Hall Input Pull-up Resister Bypass Condenser for Charge-pump Voltage Bypass Condenser for Charge-pump Voltage (Power Loss Hold up of 500mS.) Charge-pump Condenser External Resistance for Oscillator External PNP Tr. for 5V Regulator 5V Regulator Current Sensing Resistance Phase Compensation Condenser for 5V Reg. 1 Phase Compensation Condenser for 5V Reg. 2 Bypass Condenser for VCC1 Bypass Condenser for VCC2 Bypass Condenser for REGC FG, FLT Output Pull- Up Resistances Current Control input Gain Resistances 1 Current Control input Gain Resistances 2 Current Control Off Time Resistance Current Control input Impedance Compensation Symbol Cvm Ciss Rg Ro Rgs VF Vak RS Rnf Cnf Rh Ccp1 Ccp2 Min. Typ. 10 1200 10 10 100 13 0.4 430 180 10 4.7 33 Max. 0.5 Units F pF k V V pF k F F
Cp1~3 Rosc PNP RSR Creg1 Creg2 Cvcc1 Cvcc2 Cregc Rfg, Rflt Rct1 Rct2 Rcl Rcin
Cp Rosc hfe RSR Creg1 Creg2 Cvcc1 Cvcc2 Cregc Rd Rct1 Rct2 Rcl Rci
100 -
470 15 10 1 1 10 10 10
-
nF k nF nF F F F k k k k k
2.5 -
100 2 0.5 0.03
Rev.1.0, Sep.16.2003, page 38 of 40
M63155FP
Value External Parts Name Ccl Rpwm Notes Current Control Off Time Condenser PWM Input Pull-resistance Symbol Ccl Rpwm Min. Typ. 440 100 Max. Units pF k
*Note 10: This parameters are calculated values.
Rev.1.0, Sep.16.2003, page 39 of 40
M63155FP
Package Outline
52P9Y-K
MMP
JEDEC Code - Weight(g) - Lead Material Cu Alloy
Plastic 52pin 450mil HSSOP
e b2
EIAJ Package Code HSSOP52-P-450-0.65
TOP VIEW
52 27
BOTTOM VIEW
e1 I2
F
Recommended Mount Pad
Dimension in Millimeters Min Nom Max - - 2.2 0.2 0 0.1 - 2.0 - 0.22 0.27 0.32 0.23 0.25 0.3 17.3 17.5 17.7 8.2 8.4 8.6 - 0.65 - 11.63 11.93 12.23 0.3 0.5 0.7 - 1.765 - - - 0.625 0.775 - - 0.12 - - - - 0.1 0 - 10 - 0.5 - - 11.43 - 1.27 - - Symbol
HE
E
1
26
SIDE VIEW
G D
A
A2
e y
A1
b
x
M
C
A A1 A2 b c D E e HE L L1 z Z1 x y b2 e1 I2
z Z1 Detail G
Detail F
Rev.1.0, Sep.16.2003, page 40 of 40
L1
L
Sales Strategic Planning Div.
Keep safety first in your circuit designs!
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party. 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.
RENESAS SALES OFFICES
Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501 Renesas Technology Europe Limited. Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900 Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11 Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836 Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999 Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952 Renesas Technology Singapore Pte. Ltd. 1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001
http://www.renesas.com
(c) 2003. Renesas Technology Corp., All rights reserved. Printed in Japan.
Colophon 1.0


▲Up To Search▲   

 
Price & Availability of M63155FP

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X